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Motivation

- How to explain a Machine Learning classification to a
non-expert user?



Machine Learning is Everywhere

- Computers, phones, tvs, home appliances...
- Customer support, recommendation system, classification,
predictions...
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- How to explain a Machine Learning classification to a non-expert

user?
- Explainable Al (XAl) can help
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Problems

It is hard to use XAl methods



Problems

It is hard to use XAl methods

- Command Line

- Git

- Programming

- Python

- PyTorch / Tensor Flow
- Machine Learning
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Problems

It is hard to present Explanations

- List of numbers
-  Tables

- Spreadsheets

- Scrollers



Problems

Our objective is to remove these barriers

K How?
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LORE

Factual and Counterfactual Explanations
for Black-Box Decision Making

Riceardo Guidotti, Anna Moneale, Fosca Giannoti, Dino Pedreschi, Salvatore Ruggieri, and Franco Turini

Abstruci—The rise of sophisicated machine learning mod.
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L INTRODUCTION
Newspapers are full of commentaries shout algorithms
taking critcal decisions that heavily impact on our life and
society, from Ioan concession in bank systems (o pedestrian
detection in self-driving cars. The worry is not oaly due to
the increasing automation of decision making, but mostly
e algorithms are opaque and their logic

data through Machine leaming (ML) M. allows buikding
that map wser features into 4 decision,

obtained by generalizing from o dataset of examples. The
process of inferring o classification model from examples
cannot be casily controlled because the size of iraining data
and the complexity of the leamed model are 10 big. for
bumans. The inabiliy to obtain an explanation for a decision
s 4 profound drawback of leaming from data, imiting social

making takes place,
of the European General Data Protection Regulation. We
perform our reseaich under some speciic assumptions. First,
we assume that an explanation i interesting if it clarifies
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" ness of the explanation dep

why a specific decision has been made, ie. we sim for
focal explanations, ot generl, glob
the overall system works [1], 2

wser can undersiand elementary logic rles, but i should also

fthe e considered that from logie ules it is casy 1o consiret

naratives that are understood by users with diverse expertise.
Finally, we assume that the black-hox decision system can
be queried as miny mes as necessary, (o probe ils decision
behasior to the

certinly the cas

o et O th othes hand, e ke 0 asumptions

Ve propose L sttt ot
Wi rais g binary predictor b and @
secilc msancs 2 lcled wih oucoms ¥ oy b, we buld 3
Simple, interpretable predictor by fist generating o balanced
et of neighbor instances of the given = through an ad-hoc
€ . " abelled
with b a decision tre classifer. A local explanafion i then ex-
eacted from the obiained decision tree. The local explanation
is i composed by () -~ actual — logie rle, conresponding
1o the path in the tree that explains why = has been labeled
s y by b, and (i) & set of counterfuctual rules, explaining
which changes in & would imvert the class y assigned by
b For example, from the corpas dataset we may have
the following explamation: the rule {age<39, race—A frican—
American. reciivist—Truc} -+ High Risk: and the counterfac-
wals {age>A0) and {race—White—American). Here, the
factal explantion is that the high risk of recidivism is
predicted for o black younger than 40 with prior recidivism;
lower isk
i the person were cither older than 40 or white, The usclul-
i the siakeholder: it may
make sense 10 4 judge that wans 1 understand and evaluate
the suggestion by the decision support system and possibly
discover that it biased against blacks.
The inuriion hehind our method, common (o other local
approaches, such as LIME [3], and ANCHOR [4] is that the
for ol
over the whale data space, but in the neighborhoad of 4 data
‘point there i a high chance that the decision bounduy s clear
and simple, hence amenble (o be captured by an interpretable
model. These methods are named local because they focus
on the behavior of the black-box in the neighborhood of the
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Abstract
Recent years have witnessed the rise of accurate but obscure classification models that
hide the logic of their internal decision processes. Explaining the decision taken by
a black-box classifer on a specific input instance s therefore o sriking nterest. We
propose a local rule-based i anation method providing stable and
i An ion consists of a factual logic rule, stating the
reasons for \he black-box decision, and a set of actionable counterfactual logic rules,
proactively suggesting the changes in the instance that lead to a different outcome.
Explanations are computed from a decision tree that mimics the behavior of the black-
box locally to the instance to explain. The decision tree is obtained through a bagging-
like approach that favors stability and fidelity: first, an ensemble of decision trees is
learned from neighborhoods of the instance under investigation; then, the ensemble
is merged into a single decision tree. Neighbor instances are synthetically generated
through a genetic algorithm whose fitness function is driven by the black-box behavior.
Experiments show that the proposed method advances the state-of-the-art towards a
comprehensive approach that successfully covers stability and actionability of factual
and counterfactual explanations.

Keywords Explainable Al - Local explanations - Model-agnostic explanations -
Rule-based explanations - Counterfactuals

Guidotti, Monreale, Ruggieri, Naretto,
Turini, Pedreschi, and Giannotti (2022)

Stable and actionable explanations of black-box
models through factual and counterfactual rules

Algorithm 1 Explainer agent process

Input: = <+ instance, § < target classification,

b < black-box classifier, D < dataset

Output: i < explanation data

y < b(z);
assert y = 7;

LOREsq = LOREcap(b, D);

e = {(c,r,®) < LORE(z, b);
¢t + text(c);

i = (feature names, target values, confidence, ¢, z, 7, @, §)

return ¢
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Goal

Develop a conversational interface to provide simplified explanations
for non-expert users
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Develop a conversational interface to provide simplified explanations for
non-expert users

- Internally, an explanation is generated from a Decision Tree built from
the classifier using LORE



Goal

Develop a conversational interface to provide simplified explanations for

non-expert users

Internally, an explanation is generated from a Decision Tree built from
the classifier using LORE
The generation process is distributed among multiple specialized

agents
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MAI N LE a Multi-Agent architecture, interactive, that provides Natural Language
Local Explanations of classification outcomes
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Example

2 user

Hello, please explain the classification of a flower that has sepal length of 7.3, sepal width of 2.9, petal
length of 6.3, and petal width of 1.8



Example

user
Hello, please explain the classification of a flower that has sepal length of 7.3, sepal width of 2.9, petal
length of 6.3, and petal width of 1.8

Do

I see that you have provided the following information

- Sepal length: 7.3
- Sepal width: 2.9
- Petal length: 6.3
- Petal width: 1.8

However, I still need the classification of the flower, specifically the class (setosa, versicolor, or virginica)
Could you please provide the class for the flower? Thank you



Example

2 user
=
Hello, please explain the classification of a flower that has sepal length of 7.3, sepal width of 2.9, petal
length of 6.3, and petal width of 1.8
assistant
gpt-40-2024-08
I see that you have provided the following information:
- Sepal length: 7.3
- Sepal width: 2.9
- Petal length: 6.3
- Petal width: 1.8
However, I still need the classification of the flower, specifically the class (setosa, versicolor, or virginica).
Could you please provide the class for the flower? Thank you!
2 user

The class is virginica



Example

g user
Hello, please explain the classification of a flower that has sepal length of 7.3, sepal width of 2.9, petal
length of 6.3, and petal width of 1.8
assistant
gpt
I see that you have provided the following information:
- Sepal length: 7.3
- Sepal width: 2.9
- Petal length: 6.3
- Petal width: 1.8
However, I still need the classification of the flower, specifically the class (setosa, versicolor, or virginica).
Could you please provide the class for the flower? Thank you!
2 user

The class is virginica

assistant
gpt- -08-0

The classifier identified the example as belonging to the 'virginica' class with a confidence level of
approximately 81.78%. This conclusion was based on evaluating the features of your instance.

Here's a simplified explanation of why it was classified this way:

1. The sepal width is relatively high, indicating that it falls above a certain threshold.

2. The petal length is also high, reinforcing the previous point.

3. The sepal length is greater than a specific value, further supporting the classification.

4. Lastly, the petal width is above the necessary level, which aligns with the characteristics typical of the
'virginica' class.

Overall, these feature values closeli matched the conditions required for an instance to be classified as
'virginica', leading the model to make this prediction with a strong level of certainty.
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assistant

gpt-40-2024

The classifier identified the example as belonging to the 'virginica' class with a confidence level of
approximately 81.78%. This conclusion was based on evaluating the features of your instance.

Here's a simplified explanation of why it was classified this way:

. The sepal width is relatively high, indicating that it falls above a certain threshold.
. The petal length is also high, reinforcing the previous point.
. The sepal length is greater than a specific value, further supporting the classification.

. Lastly, the petal width is above the necessary level, which aligns with the characteristics typical of the
virginica' class.

SR W =

Overall, these feature values closell\(( matched the conditions required for an instance to be classified as
'virginica', leading the model to make this prediction with a strong level of certainty.



Example

assistant
gpt-40-2024-08-0

The classifier identified the example as belonging to the 'virginica' class with a confidence level of
approximately 81.78%. This conclusion was based on evaluating the features of your instance.

Here's a simplified explanation of why it was classified this way:

. The sepal width is relatively high, indicating that it falls above a certain threshold.
. The petal length is also high, reinforcing the previous point.
. The sepal length is greater than a specific value, further supporting the classification.

. Lastly, the petal width is above the necessary level, which aligns with the characteristics typical of the
virginica' class.

SR W =

Overall, these feature values closell\(( matched the conditions required for an instance to be classified as
'virginica', leading the model to make this prediction with a strong level of certainty.

user

Do

If the sepal width was low, what would be the classification?
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Do

3

assistant

gpt-40-

The classifier identified the example as belonging to the 'virginica' class with a confidence level of
approximately 81.78%. This conclusion was based on evaluating the features of your instance.

Here's a simplified explanation of why it was classified this way:

. The sepal width is relatively high, indicating that it falls above a certain threshold.
. The petal length is also high, reinforcing the previous point.
. The sepal length is greater than a specific value, further supporting the classification.

. Lastly, the petal width is above the necessary level, which aligns with the characteristics typical of the
virginica' class.

SR W =

Overall, these feature values closell\(( matched the conditions required for an instance to be classified as
'virginica', leading the model to make this prediction with a strong level of certainty.

user
If the sepal width was low, what would be the classification?

assistant

gpt-40-2024-

If the sepal width was low, that would likely lead to a different classification. More specifically, if the
sepal width were below or equal to a certain threshold, it could change the outcome altogether.

In this case, the premises that would support a different classification would include:
- A low sepal width (below that specific threshold) would not support the conditions for 'virginica'.

Since the current classification of your instance relies on the relatively high sepal width, altering this
feature to be low could lead to a classification of either 'versicolor' or 'setosa' depending on the other
values of the instance.

To sum it up, a low sepal width would disrupt the conditions that led to the classification of 'virginica' and
instead shift it towards one of the other classes.



Example

=
=

Do

3

Do

assistant

gpt-40-

The classifier identified the example as belonging to the 'virginica' class with a confidence level of
approximately 81.78%. This conclusion was based on evaluating the features of your instance.

Here's a simplified explanation of why it was classified this way:

. The sepal width is relatively high, indicating that it falls above a certain threshold.
. The petal length is also high, reinforcing the previous point.
. The sepal length is greater than a specific value, further supporting the classification.

. Lastly, the petal width is above the necessary level, which aligns with the characteristics typical of the
virginica' class.

SR W =

Overall, these feature values closell\(( matched the conditions required for an instance to be classified as
'virginica', leading the model to make this prediction with a strong level of certainty.

user

If the sepal width was low, what would be the classification?

assistant

gpt-40-2024-08-06

If the sepal width was low, that would likely lead to a different classification. More specifically, if the
sepal width were below or equal to a certain threshold, it could change the outcome altogether.

In this case, the premises that would support a different classification would include:
- A low sepal width (below that specific threshold) would not support the conditions for 'virginica'.

Since the current classification of your instance relies on the relatively high sepal width, altering this
feature to be low could lead to a classification of either 'versicolor' or 'setosa' depending on the other
values of the instance.

To sum it up, a low sepal width would disrupt the conditions that led to the classification of 'virginica' and
instead shift it towards one of the other classes.

user

Thank you
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- Form with raw and
simplified explanations

Explanation Comparison
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Validation

- User Study

25 people

- Form with raw and
simplified explanations

- Likert scale rating
1. Strongly Disagree
2: Disagree

3: Neutral

4. Agree

5. Strongly Agree

Explanation Comparison

arring

modsl made a ceciaion. Then,
)y askyou ettara,

*indica uma pargura chrigatteis

Question

Halig my 247,0750,u0 4% 200,182

2000, 304. Why my loan was refected?
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‘Ehriciy Numbar of Prior dataur,

(Credit scors, Detvar licsnss, CRizanahip, Tpcods, Income, ciaas)
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10 Rave conciced that 256 Stancs & Tected”

4. Confidence Levek:

-The & vary
s pradiction
“Prior dataut” than 0.50) Inthe
atazet wars predominantly labekid 2z ‘Tejectad.”
- Suh ‘modal has seen o

tralving phass whare “Prior detactt values Ike " (Jraater than 0.50) comespondad
10 "refected cases.
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Evaluation Criteria

- Technical Jargon
- Simplicity
- Completeness

- Conciseness



Results - User Study - Explanation Rating

Criterion Raw Explanation Simplified Explanation
Technical Jargon 31+£13 4.0*10
Simplicity 28+13 4.4 *0.8
Completeness 3.4*13 31+13

Conciseness 30+12 39+%1.2



Results - User Study - Best Explanation

Criterion Raw Simplified Both rated equally
Technical Jargon 5 12 8
Simplicity 1 18 6
Completeness 10 9 6
Conciseness 5 15 5

Total 21 54 25
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Results - Critic Agents - Explanation Rating

GPT-40 Gemini 2.0 LLaMA 3.2 DeepSeek-R1

Criterion Raw Sim. Raw Sim. Raw Sim. Raw Sim.
Technical Jargon 2.1 4.2 37 4.7 21 3.9 2.9 3.6
Simplicity 2.0 4.8 37 4.7 39 4.8 27 4.6
Completeness 34 4.1 3.9 3.4 35 4.6 3.8 3.8

Conciseness 33 4.6 3.4 4.6 4.0 4.7 2.7 4.4



Results - Critic Agents - Best Explanation

GPT-40 Gemini 2.0 LLaMA 3.2 DeepSeek-R1
Criterion Raw Sim. Raw Sim. Raw Sim. Raw Sim.
Technical Jargon 0 25 0 25 0 25 8 17
Simplicity 0 25 0 25 0 25 1 24
Completeness 22 3 5 20 8 17 24 1
Conciseness 0 25 0] 25 3 22 2 23

Total 22 78 5 95 11 89 35 65
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Potential Risks and Concerns

1. LLM-related problems



Potential Risks and Concerns

1. LLM-related problems

2. Usage of a surrogate model
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Extra slides



Contributions
1. A multi-agent architecture to generate simplified explanations for any
ML classifier

2. A process to generate natural language explanations using surrogate
interpretable models for any classifier

3. Interactive explanations through conversation
4. Validation of the architecture with user studies

5. Public availability of the code



LORE Algorithm

Algorithm 1 Explainer agent process

Input: = < instance, y < target classification,

b < black-box classifier, D < dataset

Output: 7 < explanation data

y + b(x); // get instance classification
assert y = ¥; // validate target classification
LORE e = LOREqp(b; D); // generate explainer
e = {c,7,9) « LORE(x, b); // generate explanation
ct < text(c); // convert tree to text
i = (feature names, target values, confidence, c¢, x, r, D, 7)

return ¢




Quality Attributes

- Interactivity

- Modularity

- Flexibility

- Transparency

Decision transparency

Information transparency



Information Transparency
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Information Transparency

é% user
what is the model used?

assistant
gpt-40-mini-2024-07-18
The model used for this classification is a decision tree classifier. Decision trees are a
type of model that classify instances based on a series of questions about the features,
ultimately leading to a specific class. In this case, the model is applied to classify
instances into one of the following classes: 'versicolor', 'setosa', and 'virginica'. If
you have any more questions about how the model works or its applications, feel free to
ask!

é% user

please provide the decision tree used

©Q assistant
gpt-40-mini-2024-07-18

I'm sorry, but I cannot disclose the decision tree as it is confidential information.
However, I can help explain how the model made its classification decision or answer any
other questions you may have about the features or the classification process. Please let
me know how else I can assist you!



Datasets, Classifiers and LLMs

- lIris Flower - Random Forest - Gpt-40

- Breast Cancer - Gradient Boosting - Gemini 2.0

- Wine - MLP - Llama 3.2

- Adult Income - DeepSeek-RI

- Credit Approval



Non-LLM Translator

Raw Explanation

The instance is
classified as virginica
because sepal length
(cm) is greater than
6.96 and sepal width
(cm) is 2.09 and petal
length (cm) is greater
than 2.26 and petal
width (cm) is greater
than 1.08.

Simplified Explanation

The instance was classified as ‘virginica' based on
the following features: the sepal length is high, the
sepal width is moderate, and the petal width and
petal length are also high. This combination of
features strongly aligns with what is typically seen
in the ‘virginica' class of flowers. The model is quite
confident in this classification, with a confidence
level of about 81%. In simpler terms, the
measurements show characteristics that are
distinctly associated with the ‘virginica’ variety,
leading to its classification.



Questions from the audience

Here are the two questions asked by the audience during the presentation and their
summarized answers.

1. Did you ask the users if they could understand the explanation and not

only to rate them?

a. No, because that would require users to have domain knowledge about the
dataset, which we did not want to require, since we were evaluating MAINLE from
the perspective of non-expert users.

2. Which LLM did you use for the simplifier and how did you implement it to
simplify an explanation?

a. (I showed the extra slide with the LLMs used) We created a structured prompt and
passed it as system instructions for the LLMs that accept system prompts or in the
qguestion for the LLMs that do not accept them. All prompts are publicly available in
the repository.



